

#your steel partner

Catalogo Generale

ACCIAI SPECIALI PER COSTRUZIONE STAMPI E UTENSILI

La nostra storia

Nata nel 1981, la storica BONCATO S.r.l., si è specializzata nella commercializzazione di Acciai da Utensili Speciali altamente legati, convenzionali, rifusi, HSS, Metallurgia delle Polveri e Metallo duro per punzoni e matrici.

La BONCATO S.r.I. negli anni ha conquistato crescenti quote di mercato puntando tutto sulla qualità e mirando alla completa soddisfazione del Cliente, condizione imprescindibile per il successo di un'azienda.

Dal 1° settembre 2025, l'azienda ha assunto la nuova denominazione di BONCATO ACCIAI SPECIALI S.R.L. entrando a far parte del prestigioso Gruppo INTERACCIAI S.R.L. di Reggio Emilia, leader in Italia nella distribuzione di Acciai Speciali.

Questa importante evoluzione rappresenta un passo strategico che porterà significativi benefici in termini di solidità, know-how e capacità logistiche, garantendo ai nostri clienti un servizio ancora più efficiente, tempestivo e orientato all'eccellenza.

Un cambiamento nel segno della continuità, con lo sguardo rivolto al futuro.

I servizi che offriamo

La Boncato Acciai Speciali S.r.l., garantisce alla propria clientela, la fornitura di Acciai Speciali da Utensili, in:

- Barre intere tonde, piatte, quadre
- Lamiere
- Anelli forgiati
- Dimensioni su misura da produzione

Grazie ad un ampio parco macchine da taglio semi-automatiche, automatiche e rifilatrici, siamo in grado di fornirvi:

Blocchi o pezzi tagliati su misura

Inoltre su richiesta eseguiamo servizi di FRESATURA, SQUADRATURA e RETTIFICA su tutte le qualità di acciaio trattate, sono disponibili anche:

Blocchetti fresati e temprati EdmW Block

Non solo Acciaio Speciale da Utensile ma anche Metallo Duro specifico per la costruzione di utensili, punzoni e matrici per stampi di tranciatura in blocchetti pre-rettificati, cilindretti grezzi o rettificati barrette.

Il nostro Mondo: Acciai e Leghe Speciali e Metallo duro

LAVORAZIONI A CALDO

ACCIAI SPECIALI CONVENZIONALI EFS-ESR E IN METALLURGIA DELLE POLVERI

LAVORAZIONI A FREDDO

ACCIAI SPECIALI CONVENZIONALI EFS-ESR RAPIDI HSS METALLURGIA DELLE POLVERI

METALLURGIA DELLE POLVERI

PER MATRICI - PUNZONI E UTENSILI SPECIALI

METALLO DURO

PER MATRICI - PUNZONI E UTENSILI SPECIALI

Aerospaziale Engineering Energia **Petrolifero** Stampi per plastica Stampi per pressofusione Lavorazioni a caldo

Packaging Automotive Racing **Elettrodomestico** Utensili speciali Stampi per tranciatura Lavorazioni a freddo

Mechanical & Industrial Engineering

Acciai e Leghe Speciali e Metallo duro : campi applicativi

LAVORAZIONI A CALDO

ACCIAI SPECIALI CONVENZIONALI EFS-ESR E IN METALLURGIA DELLE POLVERI

LAVORAZIONI A FREDDO

ACCIAI SPECIALI CONVENZIONALI EFS-ESR RAPIDI HSS METALLURGIA DELLE POLVERI

METALLURGIA DELLE POLVERI

PER MATRICI - PUNZONI E UTENSILI SPECIALI

METALLO DURO

PER MATRICI - PUNZONI E UTENSILI SPECIALI

PER REALIZZARE UN'UTENSILE DI QUALITA' NON BASTA SOLO UN BUON ACCIAIO

PARTICOLARE DA RICAVARE PROGETTAZIONE PRESTAZIONE DA RAGGIUNGERE

MATERIALE DI PRODUZIONE CONDIZIONI DI PRODUZIONE PROPRIETA' DELL'UTENSILE

PROBLEMI DA RISOLVERE SCELTA DEL MATERIALE

LAVORAZIONI MECCANICHE DISTENSIONE

TRATTAMENTO TERMICO FINITURA SUPERFICIALE

DISTENSIONE

RIVESTIMENTO SUPERFICIALE PRODUZIONE

RICONDIZIONAMENTO

Stampo (punzone o matrice), utensile da taglio

Forma dell'utensile e dello stampo

Durata dell'utensile, del filo dei taglienti, produzione da realizzare

Composizione e classificazione del materiale

Criticità della fase produttiva

Individuazione delle caratteristiche richieste

Usura, adesione, rottura, scheggiatura dei taglienti

Convenzionale, rapido, PM, Metallo duro

Fresatura, tornitura, elettroerosione, rettifica

Eliminazione delle tensioni di lavorazione di sgrossatura

Processo di trasformazione struttura dell'acciaio

Con EdmW, lappatura o lucidatura a specchio

Eliminazione delle tensioni di lavorazione di finitura

Per proteggere e allungare la vita dell'utensile Numero di pezzi prodotti con l'utensile

Operazione eseguita periodicamente sull'utensile

Settore plastica, pressofusione o tranciatura metalli a freddo Dimensioni, filetti, fori, spigoli, complessità del pezzo

Piccole, medie o altissime produzioni

Qualità, spessore, durezza della lamiera o materiale tranciato

Giochi dello stampo, lubrificazione, velocità-stabilità della pressa Tenacità, resistenza all'usura, alla corrosione, durezza di utilizzo

Analizzarne le cause primarie, è fondamentale

Ogni materiale è diverso per caratteristiche, utilizzo e prestazione

Lavori di sgrossatura prima del trattamento termico

Indispensabile per prevenire eventuali problemi in fase di tempra

La durezza deve essere rapportata al tipo di utilizzo dell'utensile

Essenziale per i successivi rivestimenti superficiali Raccomandabile dopo ogni tipo di lavorazione di finitura eseguita

Rivestimenti CVD, PVD, PA-CVD etc

Più vengono rispettati tutti i passaggi e più il risultato sarà sicuro Pulizia, rettifica, lucidatura, saldatura seguiti da una distensione

Gamma Acciai Speciali convenzionali EFS-ESR e Rapidi HSS (composizione media in %)

												3.7	
HOT/PLASTIC STEEL	DIN - UNI	AISI	W. n°	С	Cr	Мо	٧	W	Со	Mn	Si	Ni	S
C45	CK45	1042	1.1730	0,45						0,70		0,30	
1.2311 PS Bon	40CrMnMo7	P20	1.2311	0,40	1,90	0,20				1,50		0,30	
1.2312 PS Bon	40CrMnNiMoS86	P20+S	1.2312	0,40	1,90	0,20				1,50		0,30	0,10
1.2738 PS Bon	40CrMnNiMo\$864	P20+Ni	1.2738	0,40	1,90	0,20				1,50	0,30	1,00	
1.2738 PS Bon HH	25MnCrNiMoV664	P20+Ni Mod	1.2738HH	0,26	1,40	0,60	0,12			1,60	0,30	1,10	
18NiCrMo5	UNI 7846		1.6566	0,18	0,90	0,20				0,80	0,30	1,35	0,03
39NiCrMo3 Bon	UNI 7845	9840	1.6511	0,39	0,90	0,20				0,70	0,30	0,90	0,03
42CrMo4 Bon	UNI 7845 Replace	4140	1.7225	0,42	1,00	0,20				0,80	0,30	0,20	
1.2083 PS	X40Cr14	420C	1.2083	0,40	14,5		0,30			0,50	0,80		
1.2085 PS Bon	X33Cr\$16	420F	1.2085	0,33	16,0					1,00	0,50	0,70	
1.2316 PS Bon	X38CrMo16		1.2316	0,38	16,5	1,20							
1.2329 HS	46CrSiMoV7		1.2329	0,46	1,75	0,30	0,20			0,75	0,65	0,50	0,03
1.2340 HS	X36CrMoV5-1	H11Mod	1.2340	0,36	5,00	1,30	0,50			0,30	0,30		
1.2343 HS	X37CrMoV5-1	H11	1.2343	0,37	5,30	1,30	0,40			0,40	1,00		
1.2344 HS	X40CrMoV5-1	H13	1.2344	0,40	5,30	1,40	1,00			0,40	1,00		
1.2345 HS	X50CrMoV5-1		1.2345	0,50	5,00	1,30	1,30			0,30	1,00		
1.2362 HS	X63CrMoV5-1		1.2362	0,60	5,20	1,20	0,30				1,10		
1.2365 HS	32CrMoV12-28	H10	1.2365	0,32	3,00	2,80	0,50			0,30	0,25		
1.2367 HS	X38CrMoV5-3		1.2367	0,37	5,10	2,90	0,55			0,35	0,45		
1.2714 HS	55NiCrMoV7	L6	1.2714	0,55	1,10	0,50	0,10			0,70	0,30	1,70	

COLD STEEL	DIN - UNI	AISI	W. n°	С	Cr	Мо	٧	W	Со	Mn	Si	Ni	S
1.2067 CS	102Cr6	L1/L3	1.2067	1,00	1,50					0,15	0,15		
1.2080 CS	X210Cr12	D3	1.2080	2,00	11,5		0,30			0,40	0,30		
1.2210 CS	115CrV3		1.2210	1,20	0,70		0,10						
1.2358 CS Bon	60CrMoV18-5		1.2358	0,60	4,50	0,50	0,20			0,80	0,35		
1.2360 CS Mod	X48CrMoV8-1	A8 Mod	1.2360	0,50	7,80	1,40	0,50			0,45	0,90	0,25	0,005
1.2363 CS	X100CrMoV5	A2	1.2363	1,00	5,30	1,10	0,20			0,60	0,30		
1.2379 CS	X153CrMoV12	D2	1.2379	1,55	11,5	0,70	1,00			0,30	0,30		
1.2436 CS	X210CrW12	D6	1.2436	2,10	12,0			0,80		0,40			
1.2510 CS	100MnCrW4	01	1.2510	0,95	0,60		0,10	0,60		1,10			
1.2550 CS	60WCrV7	\$1	1.2550	0,60	1,10		0,15	1,90		0,30	0,60		
1.2690 CS		A7	1.2690	2,20	5,00	1,00	4,80	0,60					
1.2767 CS	45NiCrMo16	BF40	1.2767	0,45	1,70	0,40	0,10			0,38	0,30	4,00	
1.2826 CS	60MnSiCr4		1.2826	0,60	0,30					1,10	1,00		
1.2842 CS	90MnCrV8	O2	1.2842	0,90	0,35		0,13			2,00	0,25		
1.3505 CS	100Cr6	52100	1.3505	1,00	1,50					0,35	0,25		
W110 h8 CS	110W4	Fl	1.2516	1,15	0,20		0,10	1,00		0,30	0,20		
X120 SE				1,20	12,0	1,40	1,70	2,50					
X700 SE ESU				1,05	7,00	1,40	2,00	0,90		0,50	1,00		
X760 SE				1,12	7,60	1,60	2,35	1,20		0,40	1,10		
X780 SE				0,50	7,80	1,50	1,50						
X825 SE ESU				1,05	8,25	2,20	0,40				0,90		

HSS STEEL	DIN - UNI	AISI	W. n°	С	Cr	Мо	V	W	Со	Mn	Si	Ni	S
1.3243 HSS	HS6-5-2-5	M35	1.3243	0,95	4,10	4,90	1,80	6,35	4,70				
1.3247 HSS	HS2-1-9-8	M42	1.3247	1,08	3,80	9,40	1,20	1,50	8,00				
1.3343 HSS	HS6-5-2C	M2	1.3343	0,90	4,00	5,00	1,90	6,40		0,35	0,30		
1.3355 HSS	HS18-0-1	Tl	1.3355	0,75	4,10		1,10	18,0		0,30	0,25		

ACCIAI SPECIALI

MARAGING	DIN - UNI	AISI	W. n°	С	ΑI	Мо	V	W	Со	Mn	Si	Ni	Ti
MRG NC250			1.6359	0,03	0,10	4,80			7,50	0,10	0,10	18,5	0,40
MRG NC300			1.6354	0,03	0,10	4,80			9,00	0,10	0,10	18,5	0,60
MRG NC350				0,03	0,10	4,80			12,0	0,10	0,10	18,5	1,40

Gamma Acciai Speciali in Metallurgia delle Polveri (comp. media in %)

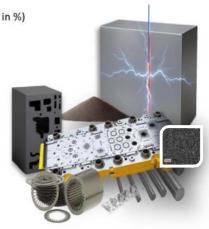
Dall'evoluzione tecnologica nella produzione di acciai speciali per utensili da lavorazioni a freddo nascono gli acciai alto legati in Metallurgia delle Polveri "MICROPOWDER" PM-HIP, che offrono prestazioni superiori grazie alla loro composizione e durezza. Questi materiali garantiscono maggiore durata degli utensili, resistenza all'usura adesiva e abrasiva, stabilità dimensionale dopo trattamento termico, elevata tenacità, resistenza alla rottura e alla compressione, oltre a un'ottima idoneità ai rivestimenti superficiali antiusura. Gli acciai "MICROPOWDER" PM-HIP delle serie H, X, Z e W per le lavorazioni a freddo e della serie PSS per il settore plastica trovano crescente impiego nelle produzioni di serie dei settori automotive, elettrodomestico, ferramenta, minuteria metallica, contatteria elettrica, costruzione di utensili speciali e stampi per materie plastiche.

MICROPOWDER

PULVER SPEZIALSTAHL TECHNIK

PM TOOL S	TEEL HIP			С	Cr	Мо	٧	W	Co	Mn	Si	ИЬ	
PM H830	Extra	MICROPOWDER	PM-HIP	1,05	8,30	2,20	0,40				0,90		
PM H2379	Extra	MICROPOWDER	PM-HIP	1,55	12,0	0,80	1,00			0,30	0,30		
PM H3343	Extra	MICROPOWDER	PM-HIP/TCP	0,90	4,10	5,10	1,80	6,50		0,40	0,30		
PM XM4	Hip	MICROPOWDER	PM-HIP/TCP	1,35	4,10	5,00	4,10	5,90	0,50	0,30	0,30		∢
PM X10	Hip	MICROPOWDER	PM-HIP	2,45	5,20	1,25	9,60	0,90		0,50	0,90		COSTRUZIONE UTENSILI SPECIALI E TRANCIATURA
PM X17	Hip	MICROPOWDER	PM-HIP	0,80	4,00	2,90	1,00	3,00	8,10			1,00	CIA
PM X23	Hip	MICROPOWDER	PM-HIP/TCP	1,30	4,25	5,10	3,00	6,30	0,50				SAN
PM X30	Hip	MICROPOWDER	PM-HIP/TCP	1,30	4,20	5,10	3,00	6,30	8,40	0,30	0,60		ETI
PM X49	Hip	MICROPOWDER	PM-HIP	1,50	4,00	2,50	4,00	2,60					IALI
PM X52	Hip	MICROPOWDER	PM-HIP/TCP	1,60	4,80	1,90	5,00	10,4	7,80	0,30	0,30		ECI
PM X53	Hip	MICROPOWDER	PM-HIP/TCP	2,50	4,25	3,10	8,10	4,10					II SF
PM X60	Hip	MICROPOWDER	PM-HIP	2,30	4,20	7,20	6,80	6,50	10,5				ISN
PM X80	Hip	MICROPOWDER	PM-HIP	2,40	4,00	4,95	6,30	11,0	15,8				UTE
PM X94	Hip	MICROPOWDER	PM-HIP	1,40	6,30	1,50	3,60	3,50					NE
PM Z11	Spezial	MICROPOWDER	PM-HIP	0,60	4,45	2,70	1,10	2,05		0,30	1,00		OZIC
PM Z31	Spezial	MICROPOWDER	PM-HIP/TCP	0,70	7,30	1,30	2,80						STRI
PM Z91	Spezial	MICROPOWDER	PM-HIP/TCP	1,80	5,30	1,35	9,10			0,50	0,80		OO
PM ZT15	Spezial	MICROPOWDER	PM-HIP	1,60	4,05		4,90	12,0	5,10	0,30	0,30		
PM ZT41	Spezial	MICROPOWDER	PM-HIP	0,70	7,50	2,00	1,00						
PM ZW51	Spezial	MICROPOWDER	PM-HIP	1,15	7,50	1,60	2,40	1,00					
PM WR15	Spezial	MICROPOWDER	PM-HIP	3,45	5,20	1,35	14,9			0,50	0,90		
PM WR95	Spezial	MICROPOWDER	PM-HIP	3,40	4,10	4,90	9,50	10,1	9,00				
PM PSS-20	Stainless	MICROPOWDER	PM-HIP/ TCP	2,30	14,0	1,00	9,00						
PM PSS-40	Stainless	MICROPOWDER	PM-HIP	1,50	14,0	2,00	4,00						- ic
PM PSS-50	Stainless	MICROPOWDER	PM-HIP	2,15	17,0	1,00	5,50			0,40			PLASTICA
PM PSS-90	Stainless	MICROPOWDER	PM-HIP/TCP	1,90	20,0	1,00	4,00	0,60		0,30	0,70		

ANELLI FORGIATI	TONDI	PIATTI	QUADRI	LAMIERE	BLOCCHI


Acciai Speciali per costruzione Stampi e Utensili LV-2025-ITA-CT

Gamma Metallo duro MCT Mould Carbide Tooling (composizione media in %)

Laddove, nella costruzione di punzoni e matrici per stampi per lavorazioni a freddo, gli acciai in Metallurgia delle Polveri alto legati PM-HIP "MICROPOWDER" non fossero sufficienti a raggiungere produzioni soddisfacenti, ecco che entra prepotentemente in gioco il METALLO DURO "MCT" Mould Carbide Tooling.

Il Metallo duro MCT viene utilizzato ovunque prevalgano condizioni estreme in cui altri materiali falliscono. L'alta pressione, l'alta temperatura, l'uso di materiali abrasivi o aggressivi e la lavorazione di materiali molto duri sono solo alcuni esempi di criteri che causano l'usura e a cui i metalli duri devono resistere.

Il Metallo duro, grazie alle sue caratteristiche di altissima resistenza all'usura e durezza, viene utilizzato per la realizzazione di punzoni e matrici per stampi di tranciatura che devono produrre milioni di particolari metallici, spaziando principalmente nei vari settori aeronautico, aerospaziale, petrolchimico, alimentare, automotive, medicale, navale, edilizia, energia, elettrico, meccanico, elettrodomestico e packaging.

CARBIDE TOOL MCT	w	Со	Altro		Dimensioni Grano	Densità g/cm³	Durezza HV30	Tenacità MNm ^{-3/2}	Resistenza rottura N/mm³
HIGH TOUGHNESS MD RB 30	85	15			Coarse	14.0	1080	18.5	4000
EDMW CORROSION FREE									
MD 20 SCF	89	10	EdmW	1	Sub-Micron	14.4	1620	11.0	4300
MD 24 SCF	87	12	EdmW	1	Medium	14.2	1380	13.0	3900
MD 40 SCF	87	12	EdmW	1	Fine	14.1	1370	16.0	3800
MD 50 SCF	84	15	EdmW	1	Medium	13.9	1190	-	3500
ISO Varie									
MD X7	91,5	7,5		1	Sub-Micron	14.7	1740	9.0	4100
MD X10	89	10		1	Sub-Micron	14.4	1600	9.8	4300
MD X15	84	15		1	Sub-Micron	14.0	1390	12,5	4500
MD X8UF	91	8		1	Ultra-Fine	14.5	1860	8.5	4100
MD X12UF	87	12		1	Ultra-Fine	14.1	1650	9.5	4400

Blocchetti in Metallo duro per EdmW con dimensioni mm 100x100, 100x150, 150x150, 150x200, 150x250, 150x300 mm 175x300, 200x200, 200x300, 250x250, 300x300, 400x400

spessore 1,00 ÷ 80,00 mm

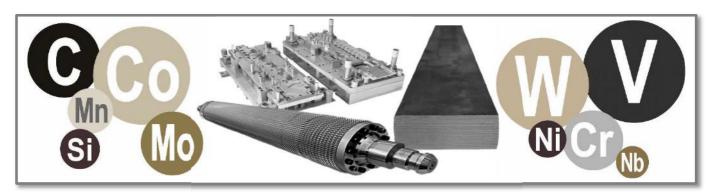
1.spessore Pre-Rettificato Toll. +0,40/+0,60 mm 2.spessore Rettificato Toll. +0.10/+0.15 mm 3.spessore Rettificato Plus Toll. -0,00/+0,10 mm

Cilindretti in Metallo duro per spine o punzoni

- con diametro grezzo o rettificato h6
- lunghezza 330 mm

Preformati in Metallo duro a disegno

- particolari realizzati a disegno su specifiche di progettazione fornite dal cliente con o senza perno
- blocchi con dimensioni speciali fuori/standard, con pre-foro o filettati
- bussole con dimensioni o lunghezze fuori/standard


Barrette rettangolari in Metallo duro per punzoni

- grezzi di sinterizzazione con sovrametallo con tolleranze positive

L'importanza degli elementi metallici in un acciaio da utensili

Fondamentale per stabilire la vera qualità di un Acciaio Speciale, per la costruzione di un utensile o di un componente attivo di uno stampo (punzone e matrice), è la presenza in percentuale dei vari elementi metallici che ne compongono la sua lega e di conseguenza la loro propria struttura. Le proprietà di durezza, tenacità, resistenza all'usura adesiva e abrasiva, di resistenza alla corrosione - compressione e trazione, di resistenza alla rottura e alla scheggiatura, di lavorabilità - rettificabilità e stabilità dimensionale dopo tempra, sono determinate dall'unione dei vari elementi, che grazie alle loro proprietà possono garantire la massima ottimizzazione del processo produttivo. La combinazione delle percentuali dei vari elementi metallici possono apportare alla lega vantaggi e svantaggi, che ne possono migliorare o peggiorare le caratteristiche tecniche, meccaniche e strutturali.

Nell'acciaio è normalmente presente in una percentuale che va da 0,35 a 3,5%

Il Carbonio è l'elemento più importante e influente nella lega, presente in tutti gli acciai e si abbina molto bene al Cromo, al Wolframio e al Manganese.

La presenza del Carbonio negli acciai speciali da utensili a freddo, produce i seguenti effetti:

- Aumenta la durezza in rapporto alla sua presenza in percentuale
- Aumenta la resistenza all'usura
- Aumenta la tenacità
- Migliora la temprabilità
- Diminuisce la resistenza all'allungamento
- Diminuisce la saldabilità
- Diminuisce la lavorabilità
- Diminuisce la duttilità
- Indeformabilità dopo trattamento termico

Cromo

Nell'acciaio è normalmente presente in una percentuale che va da 3,5 a 20%

Il Cromo, è presente nella maggior parte degli acciai speciali da utensili.

Il Cromo è un formatore di carburi, che aumenta la resistenza del tagliente all'usura, può essere abbinato al Nichel e al Molibdeno.

La presenza del Cromo negli acciai produce i seguenti effetti:

- Aumenta la resistenza alla corrosione, alla decarburazione e all'ossidazione a caldo (quando è presente con una percentuale >11,5 %)
- Aumenta la resistenza all'usura abrasiva se abbinato ad una % di Carbonio alta
- Facilita il trattamento termico di tempra e abbassa la temperatura critica di raffreddamento
- Aiuta a mantenere la resistenza meccanica alle alte temperature
- Aumenta la durezza, la resilienza, il carico di rottura e non riduce l'elasticità
- Diminuisce la conducibilità termica
- Leggera tendenza alla formazione di carburi
- Diminuisce la lavorabilità 🍍

Nell'acciaio è normalmente presente in una percentuale che va da 1 a 9,5%

Il Molibdeno serve a ridurre i tempi di raffreddamento dopo tempra e questo permette agli acciai di ottenere durezze superiori. I principali acciai in cui lo si trova sono acciai da utensili rapidi e super-rapidi convenzionali e in metallurgia delle polveri PM-HIP, in quanto, essendo un forte formatore di carburi, ne aumenta le capacità di taglio. Gli effetti positivi dovuti alla presenza di questo elemento negli acciai sono:

- Aumenta la profondità di tempra, in quanto diminuisce la velocità critica di raffreddamento
- Aumenta la resistenza alla fragilità da rinvenimento e favorisce la formazione del grano
- Aumenta la saldabilità
- Aumento della resistenza alla corrosione e all'ossidazione
- Aumento del carico di rottura a trazione e della durezza
- Miglioramento della lavorabilità alle macchine utensili
- Aumento della resistenza all'usura
- Innalza il limite di scorrimento a caldo

Nichel

Nell'acciaio è normalmente presente in una percentuale che va da 1 a 4%

Il **Nichel** è introdotto spesso negli acciai da utensili speciali al Cromo-Molibdeno. Il Nichel normalmente non è presente negli acciai in metallurgia delle polveri PM-HIP. Non è un formatore di carburi.

Utilizzato, conferisce i seguenti effetti:

- Aumenta la resilienza
- Aumenta la tenacità
- Aumenta la resistenza agli urti alle basse temperature
- Aumenta il carico di rottura a trazione e la durezza
- Aumenta percentuale di allungamento e la duttilità
- Facilita il trattamento termico di tempra

Vanadio

Nell'acciaio è normalmente presente in una percentuale che va da 0,4 a 15%

Il Vanadio è un forte formatore di carburi, così aumenta la resistenza all'usura adesiva e migliora la resistenza agli urti, innalzando il limite elastico; aumenta la capacità delle parti attive degli stampi e delle lame a mantenere il tagliente e ne aumenta la resistenza anche alle alte temperature. Riduce la sensibilità al sovra-riscaldamento.

Gli effetti di questo elemento sono:

- Aumento della resistenza all'usura
- Aumento della stabilità a caldo (mantiene il tagliente negli acciai rapidi e in metallurgia delle polveri PM-HIP)
- Insieme al Wolframio (Tungsteno), conferisce agli acciai estrema durezza, anche a temperature elevate
- Aumenta la saldabilità, in quanto ha la proprietà di delimitare meglio i grani della struttura (mantiene il grano fine)
- Unito al Wolframio (Tungsteno) e al Cobalto, forma l'acciaio super-rapido e viene utilizzato negli utensili da taglio ad alta velocità
- Innalza il limite elastico
- Come per il Ni, aumenta la resistenza agli urti

Nell'acciaio è normalmente presente in una percentuale che va da 0,25 a 1,1%

La presenza del Silicio, influenza positivamente durezza e tenacità dell'acciaio. E' usato come elemento di lega nei lamierini per applicazioni elettromagnetiche, perché ne aumenta la resistività elettrica. Inoltre:

- Aumenta la resistenza all'usura degli acciai poco legati
- Danneggia fortemente la lavorabilità dell'utensile
- Diminuisce la deformabilità a freddo
- Leggera influenza sulla deossidazione
- Riduce la saldabilità

Nell'acciaio è normalmente presente in una percentuale che va da 0,5 a 17%

Il Cobalto è spesso introdotto negli acciai speciali da utensili insieme a Cromo, Nichel, Molibdeno e Vanadio. Il Cobalto non forma carburi. La sua presenza blocca la crescita dei grani a temperature elevate e migliora notevolmente la capacità dell'acciaio a non perdere la sua durezza anche a temperature elevate.

Negli acciai speciali per utensili (acciai super-rapidi) convenzionali e in quelli in metallurgia delle polveri.

- Migliora la durezza a caldo ad alta temperatura
- Aumenta il carico di rottura a trazione
- Aumenta la durezza (che mantiene anche a caldo)
- Diminuzione in percentuale alle proprietà di allungamento e resistenza alla rottura
- Migliora la resistenza alla corrosione
- Nel Metallo duro il Cobalto funge da legante in una percentuale tra il 3 e il 30%

Wolframio

Nell'acciaio è normalmente presente in una percentuale che va da 0,6 a 20%

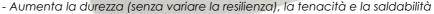
Il Wolframio o Tungsteno è usato soprattutto per la produzione di acciai speciali per utensili (acciai rapidi, super-rapidi e metallurgia delle polveri PM-HIP alto legati).

E' un forte formatore di carburi (e i suoi carburi sono tra i più duri insieme a quelli di Vanadio). Usato in quantità moderata, migliora la grana dell'acciaio rendendola densa e ravvicinata. Il Wolframio o Tungsteno conferisce agli acciai i seguenti effetti:

- Conferisce un'ottima resistenza meccanica nei particolari per lavorazione a caldo
- Grande resistenza all'usura (sia a bassa che ad alta temperatura)
- Aumento del carico di rottura a trazione (sino al 10,00 % di Wolframio)
- Aumento della resistenza all'usura adesiva e la capacità di taglio
- Aiuta a mantenere la durezza anche alle alte temperature (utensili ad alta velocità) - Diminuzione in percentuale alle proprietà di allungamento e resistenza alla rottura
- Diminuzione della resilienza (capacità di resistere agli urti senza rompersi) e quindi più
- Nel <u>Metallo duro</u> il Wolframio (Tungsteno) funge da materiale metallico in una percentuale tra il 70 e il 97%

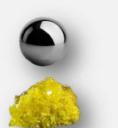
Nell'acciaio è normalmente presente in una percentuale che va da 1 a 1,8%

Il Niobio è un forte formatore di carburi e serve da stabilizzatore per l'acciaio perché cattura tutti gli elementi che durante la tempra rimangono vacanti e li organizza in un carburo. Ha la capacità di aumentare la durezza dell'acciaio perché forma carburi, ma dato che ne forma in numero più elevato che qualsiasi altro elemento, dà stabilità e quindi aumenta anche la tenacità. Il Niobio conferisce agli acciai i seguenti effetti:


- Aumenta la durezza
- Aumenta la tenacità
- Aumenta la resistenza alle alte temperature
- Aumenta la resistenza alla rottura (nel caso si formi una cricca il Niobio ha la caratteristica di contrastare la diffusione rapida di questa cricca a tutto il punzone o
- Purtroppo il Niobio, è molto costoso, e per questo è utilizzato in piccole percentuali

Nell'acciaio è normalmente presente in una percentuale che va da 0,3 a 0,5%

La presenza del Manganese negli acciai speciali da utensili, agisce da disossidante. I principali effetti sono:


- Aumenta il carico di snervamento e di rottura a trazione (con Mn all' 1-2%)
- Aumenta la resistenza alla corrosione e all'ossidazione (con Mn all' 1-2% e con la presenza di Cromo e Nichel)
- Aumenta la resistenza a fatica (con Mn all' 1-3%)
- Aumenta la resistenza all'usura (con Mn > 5%)
- Aumenta la temprabilità e abbassa la temperatura di ricottura e di tempra
- Diminuisce le deformazioni di tempra
- Abbassa velocità critica, migliora la penetrazione di tempra

Nell'acciaio è normalmente presente in una percentuale che va da 0,03 a 0,10%

Lo **Zolfo** si forma negli acciai sotto forma di inclusioni di solfuro.

Ha una particolare affinità con il Manganese e insieme formano i solfuri di manganese, che sono una delle inclusioni indesiderate presenti negli acciai.

Lo zolfo è aggiunto intenzionalmente per migliorare la lavorabilità degli acciai in genere, in particolare in alcuni acciai bonificati, aumentando la lubrificazione e creando piccole formazioni di truciolo.

Sovrametalli di lavorazione DIN 7527 / DIN 17350 (parte 10 Bozza 6/83)

La laminazione, la forgiatura e ricottura ad alte temperature dell'acciaio producono una decarburazione superficiale composta da ossidi che causano dei difetti e irregolarità superficiali. Al fine di evitare di ottenere utensili che manchino di durezza o che si rompano durante il trattamento termico è assolutamente necessario togliere, mediante lavorazione meccanica, un determinato spessore di metallo. Va osservata la seguente tabella per ottenere le misure finite esenti da difetti superficiali.

ACCIAI DA UTENSILI

da W.nr 1.1500 a W.nr.1.1899 / da W.nr 1.2000 a W.nr.1.3399

Sezioni TONDE - QUADRE

Sezioni TONDE - QUADRE

MISURA	FINITA	Barre fino	a 3500 mm
da mm	fino a mm	Sovrametalli in mm	Tolleranze sovrametalli mm
16	25	2,60	± 0,6
26	40	3,00	± 0,7
41	63	4,00	± 0,9
64	80	5,00	± 1,1
81	100	6,00	± 1,3
101	125	7,00	± 1,5
126	160	9,00	± 1,8
161	200	11,00	± 2,2
201	250	13,00	± 2,6
251	315	16,00	± 3,2
316	400	19,00	± 3,4
401	500	24,00	± 4,9
501	630	30,00	± 6,0
631	800	37,00	± 7,4
801	1000	46,00	± 9,3

MISUR	A FINITA	Barre da 350	00 a 6000 mm
da mm	fino a mm	Sovrametalli in mm	Tolleranze sovrametalli mm
16	25	-	-
26	40		-
41	63	6,00	± 1,4
64	80	7,00	± 1,6
81	100	8,00	± 1,9
101	125	10,00	± 2,1
126	160	12,00	± 2,5
161	200	14,00	± 2,9
201	250	17,00	± 3,5
251	315	21,00	± 4,2
316	400	26,00	± 5,0
401	500	32,00	± 6,2
501	630	39,00	± 7,5
631	800	49,00	± 9,4
801	1000	61,00	± 11,6

Tutti i dati riportati in questa tabella sono puramente indicativi, e soggetti a variazioni da parte delle acciaierie produttrici

CALCOLO SOVRAMETALLO Sezioni TONDE

Esempio: Tondo misura finita Diam. 166 mm Sovrametallo 11,00 mm Grezzo da acquistare minimo Diam. 176 mm

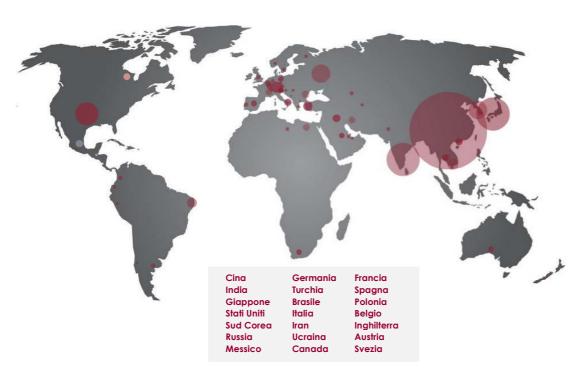
CALCOLO SOVRAMETALLO Sezioni PIATTE (utilizzare la tabella per i tondi e i quadri)

Esempio: Piatto misura finita mm 265 x 137 Sulla larghezza il sovrametallo è 16,00 mm

Sullo spessore il sovrametallo è * 13,00 mm

Larghezza grezza da acquistare minimo 281 mm Spessore grezzo da acquistare minimo 150 mm

^{* (}calcolo sovrametallo dello spessore : larghezza + spessore = valore ottenuto: 2 Es. mm 265 + mm 137 = 402 mm : 2 = 201 mm su tabella = sovrametallo 13,00 mm)


Tabella conversione delle durezze

HRC 150 Kg	HV Vickers	Rm N/mm²	Rm Kg/mm	HB Brinell	Dia. Impr. mm	HRC 150 Kg	HV Vickers	Rm N/mm²	Rm Kg/mm	HB Brinell	Dia. Impr. mm
-	85	270	27,5	80,7	6,45	35,5	350	1125	114,8	333	3,34
-	90	285	29,0	85,5	6,30	36,6	360	1155	117,8	342	3,29
-	95	305	31,1	90,2	6,16	37,7	370	1190	121,4	352	3,25
-	100	320	32,6	95,0	6,01	38,8	380	1220	124,5	361	3,21
-	105	335	34,2	99,8	5,90	39,8	390	1255	128,0	371	3,17
-	110	350	35,7	105	5,75	40,8	400	1290	131,6	380	3,13
-	115	370	37,7	109	5,65	41,8	410	1320	134,7	390	3,09
-	120	385	39,3	114	5,54	42,7	420	1350	137,7	399	3,06
-	125	400	40,8	119	5,43	43,6	430	1385	141,3	409	3,02
-	130	415	42,3	124	5,33	44,5	440	1420	144,9	418	2,99
-	135	430	43,9	128	5,26	45,3	450	1455	148,5	428	2,95
-	140	450	46,0	133	5,16	46,1	460	1485	151,5	437	2,92
-	145	465	47,4	138	5,08	46,9	470	1520	155,0	447	2,89
-	150	480	49,0	143	4,99	47,7	480	1555	158,6	(456)	2,86
-	155	495	50,5	147	4,93	48,4	490	1595	162,7	(466)	2,83
-	160	510	52,0	152	4,85	49,1	500	1630	166,3	(475)	2,81
-	165	530	54,0	156	4,79	49,8	510	1665	169,9	(485)	2,68
-	170	545	55,6	162	4,71	50,5	520	1700	173,5	(494)	2,75
-	175	560	57,1	166	4,66	51,1	530	1740	177,5	(504)	2,73
-	180	575	58,7	171	4,59	51,7	540	1775	181,1	(513)	2,70
-	185	595	60,7	176	4,53	52,3	550	1810	184,7	(523)	2,68
-	190	610	62,2	181	4,47	53,0	560	1845	188,2	(532)	2,66
-	195	625	63,8	185	4,43	53,6	570	1880	191,8	(542)	2,63
-	200	640	65,3	190	4,37	54,1	580	1920	195,9	(551)	2,60
-	205	660	67,3	195	4,32	54,7	590	1955	199,5	(561)	2,59
-	210	675	68,9	199	4,27	55,2	600	1995	203,6	(570)	2,57
-	215	690	70,4	204	4,22	55,7	610	2030	207,1	(580)	2,54
-	220	705	71,9	209	4,18	56,3	620	2070	211,2	(589)	2,52
-	225	720	73,4	214	4,13	56,8	630	2105	214,8	(599)	2,51
-	230	740	75,5	219	4,08	57,3	640	2145	218,8	(608)	2,49
-	235	755	77,0	223	4,05	57,8	650	2180	222,4	(618)	2,47
20,3	240	770	78,6	228	4,01	58,3	660				
21,3 22,2	245	785	80,1	233	3,97	58,8	670				
23,1	250 255	800 820	81,6	238 242	3,92 3,89	59,2 59,7	680 690				
24,0	260	835	83,7 85,2	247	3,86	60,1	700	Val	lori superior		
24,8	265	850	86,7	252	3,82	61,0	720		HRC	HV	
25,6	270	865	88,2	257	3,78	61,8	740		150 Kg	Vickers	
26,4	275	880	89,8	261	3,75	62,5	740		69,0	1044	
27,1	280	900	91,8	266	3,72	63,3	780		70,0 71,0	1076 1160	
27,1	285	915	93,4	271	3,69	64,0	800		72,0	1245	
28,5	290	930	94,9	276	3,66	64,7	820		73,0 74,0	1323 1400	
29,2	295	950	96,9	280	3,63	65,3	840		75,0	1478	#ixi
29,8	300	965	98,4	285	3,60	65,9	860		76,0 77,0	1556 1633	imc
31,0	310	995	101,5	295	3,54	66,4	880		78,0	1710)ros
32,2	320	1030	105,1	304	3,49	67,0	900		79,0 80,0	1787 1865	арк
33,3	330	1060	108,2	314	3,43	67,5	920		81,0	1943	Valori approssimativi
34,4	340	1095	111,7	323	3,39	68,0	940		82,0	2021	>

Maggiori produttori mondiali di acciaio

Filosofia aziendale

La nostra azienda, fin dalla sua fondazione ha messo "IL CLIENTE" al centro delle proprie attenzioni e sulle sue esigenze ha progettato l'intera azienda.

Molte aziende commerciali nel settore della vendita di acciai speciali, non capiscono o hanno smarrito la vera importanza del significato della parola "CLIENTE"; continuano a pretendere che sia il Cliente a mettersi a loro disposizione e mai viceversa, e insistono su quella strada spesso con arroganza e mancanza di autocritica e questo può succedere sia in aziende multinazionali che a conduzione famigliare.

Per un'azienda commerciale come la nostra, il "CLIENTE" è l'unico e vero valore aggiunto, che va seguito, va ascoltato e in tutti modi accontentato.

Le esigenze del mercato, e di consequenza della clientela, negli anni hanno subito e subiscono continui cambiamenti, e il segreto di un'azienda è riuscire a capire e conoscere in anticipo cosa vuole realmente il Cliente e su che tipo di prodotti puntare per aiutarlo concretamente.

Un continuo feedback con la propria clientela permette di trovare soluzioni a 360°, che possono migliorare la crescita di entrambi sotto ogni punto di vista.

Nei vari convegni a cui spesso partecipiamo sentiamo parlare di Customer Satisfaction, di Customer Care, di Customer Relationship Management, di Customer Oriented, un'affascinante serie di didascalie con le quali troppo spesso ci si riempie soltanto la bocca, si imbastiscono corposi seminari e si scoprono nuovi paradisi aziendali ma spesso e volentieri si esce fuori dalla realtà e si perdono di vista le reali esigenze del cliente.

Il "CLIENTE" ha bisogno di risposte celeri, di certezze, di un servizio all'altezza delle sue esigenze, di una qualità costante del prodotto fornito e di un supporto tecnico-commerciale che lo aiuti a risolvere problematiche legate alla realizzazione di particolari meccanici che devono solo ed esclusivamente "funzionare", il tutto si traduce in vera e propria soddisfazione e ricchezza per entrambi.

> Sales Manager Lorenzo Vedano

Richiedi, al tuo commerciale di riferimento, anche gli altri cataloghi:

Boncato Acciai Speciali - Catalogo Generale

Boncato Acciai Speciali - Acciai per lavorazioni a caldo

Boncato Acciai Speciali - Acciai per lavorazioni a freddo

Boncato Acciai Speciali - Metallurgia delle Polveri

Boncato Acciai Speciali - Metallo duro

Cataloghi redatti e realizzati dal Sig. Lorenzo Vedano

#your steel partner

#your carbide partner

BONCATO ACCIAI SPECIALI S.R.L.